Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
Methods Mol Biol ; 2550: 33-43, 2022.
Article in English | MEDLINE | ID: mdl-36180675

ABSTRACT

Melatonin is synthesized and secreted by the pineal gland in mammals. Its synthesis is triggered at night by norepinephrine released in the interstices of the gland. This nocturnal production is dependent on the transcription, translation, and/or activation of the enzymes arylalkylamine-N-acetyltransferase (AANAT), acetylserotonin O-methyltransferase (ASMT), and tryptophan hydroxylase (TPH). In this chapter, the methodology for the analysis of AANAT, ASMT, and TPH activities by radiometric assays will be presented. Several papers were published by our group utilizing these methodologies, evaluating the enzymes modulation by voltage-gated calcium channels, angiotensin II, insulin, anhydroecgonine methyl ester (AEME, crack-cocaine product), ethanol, monosodium glutamate (MSG), signaling pathways such as NFkB, and pathophysiological conditions such as diabetes.


Subject(s)
Cocaine , Insulins , Melatonin , Acetylserotonin O-Methyltransferase/metabolism , Acetyltransferases/metabolism , Angiotensin II/metabolism , Animals , Calcium Channels , Ethanol , Mammals/metabolism , Melatonin/metabolism , Norepinephrine , Sodium Glutamate , Tryptophan Hydroxylase/genetics , Tryptophan Hydroxylase/metabolism
2.
Methods Mol Biol ; 2550: 85-94, 2022.
Article in English | MEDLINE | ID: mdl-36180680

ABSTRACT

Mammalian pineal glands are composed mostly of pinealocytes, which are the melatonin secretory cells, and also importantly of glial cells in special astrocytes. With the aim of studying the interactions between pinealocytes and astrocytes, the methodologies for obtaining and maintaining isolated pinealocytes and astrocytes in culture were standardized, in addition to the co-culture of both cell types. Some works of our group were published on the interactions between isolated astrocytes and pinealocytes from the pineal gland of Wistar rats, considering the modulatory role of glutamate and angiotensin on the synthesis of melatonin. In this chapter, the methodologies for obtaining and maintaining astrocytes and pinealocytes culture as well as co-culture of these two cell types will be presented.


Subject(s)
Melatonin , Pineal Gland , Angiotensins/metabolism , Animals , Astrocytes/metabolism , Cells, Cultured , Coculture Techniques , Glutamic Acid/metabolism , Mammals/metabolism , Melatonin/metabolism , Pineal Gland/metabolism , Rats , Rats, Wistar
3.
Methods Mol Biol ; 2550: 95-100, 2022.
Article in English | MEDLINE | ID: mdl-36180681

ABSTRACT

Pineal gland secretes the hormone melatonin at night with a circadian rhythm. The synthesis and secretion of melatonin are stimulated at night by norepinephrine released by sympathetic postganglionic neurons projecting from the superior cervical ganglia. Norepinephrine simultaneously activates α- and ß-adrenoceptors, triggering melatonin synthesis.To study the regulation of melatonin production and secretion, it is very convenient to use an ex vivo preparation. Thus, it is possible to keep intact pineal glands in culture and to study the actions of agonists, antagonists, modulators, toxic agents, etc., in melatonin synthesis. Artificial melatonin synthesis stimulation in vitro is usually achieved by using a ß-adrenergic agonist alone or in association with an α-adrenergic agonist. In this chapter, the methodology of cultured pineal glands will be described. Several papers were published by our group using this methodology, approaching the role played in melatonin synthesis control by angiotensin II and IV, insulin, glutamate, voltage-gated calcium channels, anhydroecgonine methyl ester (AEME, crack-cocaine product), monosodium glutamate (MSG), signaling pathways like NFkB, pathophysiological conditions like diabetes, etc.


Subject(s)
Cocaine , Insulins , Melatonin , Pineal Gland , Adrenergic alpha-Agonists/metabolism , Adrenergic alpha-Agonists/pharmacology , Adrenergic beta-Agonists/pharmacology , Angiotensin II/metabolism , Calcium Channels/metabolism , Circadian Rhythm/physiology , Melatonin/metabolism , Norepinephrine , Pineal Gland/metabolism , Receptors, Adrenergic, beta/metabolism , Sodium Glutamate
4.
Article in English | MEDLINE | ID: mdl-35432496

ABSTRACT

Background: Endogenous phospholipases A2 (PLA2) play a fundamental role in inflammation, neurodegenerative diseases, apoptosis and cellular senescence. Neurotoxins with PLA2 activity are found in snake venoms from the Elapidae and Viperidae families. The mechanism of action of these neurotoxins have been studied using hippocampal and cerebellar neuronal cultures showing [Ca2+]i increase, mitochondrial depolarization and cell death. Astrocytes are rarely used as a model, despite being modulators at the synapses and responsible for homeostasis and defense in the central nervous system. Preserving the cell division ability, they can be utilized to study the cell proliferation process. In the present work cultured astrocytes and glioblastoma cells were employed to characterize the action of ß-micrustoxin (previously named Mlx-9), a PLA2 isolated from Micrurus lemniscatus snake venom. The ß-micrustoxin structure was determined and the cell proliferation, cell cycle phases and the regulatory proteins p53, p21 and p27 were investigated. Methods: ß-micrustoxin was characterized biochemically by a proteomic approach. Astrocytes were obtained by dissociation of pineal glands from Wistar rats; glioblastoma tumor cells were purchased from ATCC and Sigma and cultured in DMEM medium. Cell viability was evaluated by MTT assay; cell proliferation and cell cycle phases were analyzed by flow cytometry; p53, p21 and p27 proteins were studied by western blotting and immunocytochemistry. Results: Proteomic analysis revealed fragments on ß-micrustoxin that aligned with a PLA2 from Micrurus lemniscatus lemniscatus previously identified as transcript ID DN112835_C3_g9_i1/m.9019. ß-micrustoxin impaired the viability of astrocytes and glioblastoma tumor cells. There was a reduction in cell proliferation, an increase in G2/M phase and activation of p53, p21 and p27 proteins in astrocytes. Conclusion: These findings indicate that ß-micrustoxin from Micrurus lemniscatus venom could inhibit cell proliferation through p53, p21 and p27 activation thus imposing cell cycle arrest at the checkpoint G2/M.

5.
J Venom Anim Toxins Trop Dis, v. 28, e20210094, abr. 2022
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4301

ABSTRACT

Background: Endogenous phospholipases A2 (PLA2) play a fundamental role in inflammation, neurodegenerative diseases, apoptosis and cellular senescence. Neurotoxins with PLA2 activity are found in snake venoms from the Elapidae and Viperidae families. The mechanism of action of these neurotoxins have been studied using hippocampal and cerebellar neuronal cultures showing [Ca2+]i increase, mitochondrial depolarization and cell death. Astrocytes are rarely used as a model, despite being modulators at the synapses and responsible for homeostasis and defense in the central nervous system. Preserving the cell division ability, they can be utilized to study the cell proliferation process. In the present work cultured astrocytes and glioblastoma cells were employed to characterize the action of β-micrustoxin (previously named Mlx-9), a PLA2 isolated from Micrurus lemniscatus snake venom. The β-micrustoxin structure was determined and the cell proliferation, cell cycle phases and the regulatory proteins p53, p21 and p27 were investigated. Methods: β-micrustoxin was characterized biochemically by a proteomic approach. Astrocytes were obtained by dissociation of pineal glands from Wistar rats; glioblastoma tumor cells were purchased from ATCC and Sigma and cultured in DMEM medium. Cell viability was evaluated by MTT assay; cell proliferation and cell cycle phases were analyzed by flow cytometry; p53, p21 and p27 proteins were studied by western blotting and immunocytochemistry. Results: Proteomic analysis revealed fragments on β-micrustoxin that aligned with a PLA2 from Micrurus lemniscatus lemniscatus previously identified as transcript ID DN112835_C3_g9_i1/m.9019. β-micrustoxin impaired the viability of astrocytes and glioblastoma tumor cells. There was a reduction in cell proliferation, an increase in G2/M phase and activation of p53, p21 and p27 proteins in astrocytes. Conclusion: These findings indicate that β-micrustoxin from Micrurus lemniscatus venom could inhibit cell proliferation through p53, p21 and p27 activation thus imposing cell cycle arrest at the checkpoint G2/M.

6.
Melatonin Research, v. 4, n. 1, p. 99-114, jan. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3659

ABSTRACT

The pinealgland synthesizes melatonin exclusively at night, which gives melatonin the characteristic of a temporal synchronizer of the physiological systems. Melatonin is a regulator of insulin activities centrally and also peripherally and its synthesis is reduced in diabetes. Since monosodium glutamate (MSG) is often used to induce the type 2 diabetic and metabolic syndrome in animal models, the purpose of this work is to evaluate the potential effects of MSG given to neonates on the pineal melatonin synthesis in different agedmale and female rats. Wistar rats were subcutaneously injected with MSG (4mg/g/day) or saline solution (0.9%) from the second to eighth post-natal day. The circadian profiles both melatonin levels and AANAT activity were monitored at different ages. Body weight, naso-anal length, adipose tissues weight, GTT, ITT and serum insulin levels were also evaluated. Typical obesity with the neonatal MSG treatment was observed, indicated by a great increase in adipose depots without a concurrent increase in body weight. MSG treatment did not cause hyperglycemia or glucose intolerance, but induced insulin resistance. An increase of melatonin synthesis at ZT 15 with phase advance was observed in in some animals. The AANAT activity was positively parallel to the melatonin circadian profile. It seems that MSG causes hypothalamic obesity which may increase AANAT activity and melatonin production in pineal gland. These effects were not temporally correlated with insulin resistance and hyperinsulinemia indicating the hypothalamic lesions, particularly in arcuate nucleus induced by MSG in early age, as the principal cause of the increase in melatonin production.

7.
Toxicol Rep ; 6: 1223-1229, 2019.
Article in English | MEDLINE | ID: mdl-31768333

ABSTRACT

Crack cocaine smokers inhale, alongside with cocaine, its pyrolysis product, anhydroecgonine methyl ester (AEME). We have previously described AEME neurotoxic effect and its additive effect when co-incubated with cocaine. Our aim was to evaluate, the effect of AEME, cocaine and AEME-cocaine combination on glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione S-transferase (GST) activities after 3 and 6 h of exposure, periods previous to neuronal death. Lipid peroxidation was evaluated through malonaldehyde (MDA) levels at 3, 6, 24 and 48 h of exposure. All treated groups reduced neuronal viability after 24 h of exposure. AEME and cocaine decreased GPx, GR and GST activities after 3 and 6 h, with an increase in MDA levels after 48 h. AEME-cocaine combination decreased the enzymes activities after 3 and 6 h, showing an additive effect in MDA levels after 48 h. These data show that the glutathione-related enzymes imbalance caused by AEME, cocaine or AEME-cocaine combination exposure preceded neuronal death and lipid peroxidation. Moreover, the additive effect on lipid peroxidation observed with AEME-cocaine exposure after 48 h, suggest a higher neurotoxic effect after crack cocaine use when compared to cocaine alone.

8.
Brain Res ; 1704: 40-46, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30222958

ABSTRACT

A local renin-angiotensin system (RAS) has been postulated in the pineal gland. In addition to angiotensin II (Ang II), other active metabolites have been described. In this study, we aimed to investigate a role for Ang IV in melatonin synthesis and the presence of its proposed (IRAP)/AT4 receptor (insulin-regulated aminopeptidase) in the pineal gland. The effect of Ang IV on melatonin synthesis was investigated in vitro using isolated pinealocytes. IRAP protein expression and activity were evaluated by Western blot and fluorimetry using Leu-4Me-ß-naphthylamide as a substrate. Melatonin was analyzed by HPLC, calcium content by confocal microscopy and cAMP by immunoassay. Ang IV significantly augmented the NE-induced melatonin synthesis to a similar degree as that achieved by Ang II. This Ang IV effect in pinealocytes appears to be mediated by an increase in the intracellular calcium content but not by cAMP. The (IRAP)/AT4 expression and activity were identified in the pineal gland, which were significantly higher in membrane fractions than in soluble fractions. Ang IV significantly reduced IRAP activity in the pineal membrane fractions. The main findings of the present study are as follows: (1) Ang IV potentiates NE-stimulated melatonin production in pinealocytes, (2) the (IRAP)/AT4 receptor is present in the rat pineal gland, and (3) Ang IV inhibits IRAP activity and increases pinealocytes [Ca2+]i. We conclude that Ang IV is an important component of RAS and modulates melatonin synthesis in the rat pineal gland.


Subject(s)
Angiotensin II/analogs & derivatives , Cystinyl Aminopeptidase/metabolism , Melatonin/biosynthesis , Pineal Gland/metabolism , Angiotensin II/pharmacology , Animals , Astrocytes/cytology , Astrocytes/drug effects , Astrocytes/metabolism , Calcium/metabolism , Cells, Cultured , Male , Pineal Gland/cytology , Pineal Gland/drug effects , Rats , Rats, Wistar
9.
Toxicol Rep, v. 6, p. 1223-1229, nov. 2019
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2871

ABSTRACT

Crack cocaine smokers inhale, alongside with cocaine, its pyrolysis product, anhydroecgonine methyl ester (AEME). We have previously described AEME neurotoxic effect and its additive effect when co-incubated with cocaine. Our aim was to evaluate, the effect of AEME, cocaine and AEME-cocaine combination on glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione S-transferase (GST) activities after 3 and 6h of exposure, periods previous to neuronal death. Lipid peroxidation was evaluated through malonaldehyde (MDA) levels at 3, 6, 24 and 48h of exposure. All treated groups reduced neuronal viability after 24h of exposure. AEME and cocaine decreased GPx, GR and GST activities after 3 and 6h, with an increase in MDA levels after 48h. AEME-cocaine combination decreased the enzymes activities after 3 and 6h, showing an additive effect in MDA levels after 48h. These data show that the glutathione-related enzymes imbalance caused by AEME, cocaine or AEME-cocaine combination exposure preceded neuronal death and lipid peroxidation. Moreover, the additive effect on lipid peroxidation observed with AEME-cocaine exposure after 48h, suggest a higher neurotoxic effect after crack cocaine use when compared to cocaine alone.

10.
Brain Res, v. 1794, p. 40-46, 2019
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2572

ABSTRACT

A local renin-angiotensin system (RAS) has been postulated in the pineal gland. In addition to angiotensin II (Ang II), other active metabolites have been described. In this study, we aimed to investigate a role for Ang IV in melatonin synthesis and the presence of its proposed (IRAP)/AT4 receptor (insulin-regulated aminopeptidase) in the pineal gland. The effect of Ang IV on melatonin synthesis was investigated in vitro using isolated pinealocytes. IRAP protein expression and activity were evaluated by Western blot and fluorimetry using Leu-4Me-ß-naphthylamide as a substrate. Melatonin was analyzed by HPLC, calcium content by confocal microscopy and cAMP by immunoassay. Ang IV significantly augmented the NE-induced melatonin synthesis to a similar degree as that achieved by Ang II. This Ang IV effect in pinealocytes appears to be mediated by an increase in the intracellular calcium content but not by cAMP. The (IRAP)/AT4 expression and activity were identified in the pineal gland, which were significantly higher in membrane fractions than in soluble fractions. Ang IV significantly reduced IRAP activity in the pineal membrane fractions. The main findings of the present study are as follows: (1) Ang IV potentiates NE-stimulated melatonin production in pinealocytes, (2) the (IRAP)/AT4 receptor is present in the rat pineal gland, and (3) Ang IV inhibits IRAP activity and increases pinealocytes [Ca2+]i. We conclude that Ang IV is an important component of RAS and modulates melatonin synthesis in the rat pineal gland.

11.
Toxicol. Rep. ; 6: 1223-1229, 2019.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17275

ABSTRACT

Crack cocaine smokers inhale, alongside with cocaine, its pyrolysis product, anhydroecgonine methyl ester (AEME). We have previously described AEME neurotoxic effect and its additive effect when co-incubated with cocaine. Our aim was to evaluate, the effect of AEME, cocaine and AEME-cocaine combination on glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione S-transferase (GST) activities after 3 and 6h of exposure, periods previous to neuronal death. Lipid peroxidation was evaluated through malonaldehyde (MDA) levels at 3, 6, 24 and 48h of exposure. All treated groups reduced neuronal viability after 24h of exposure. AEME and cocaine decreased GPx, GR and GST activities after 3 and 6h, with an increase in MDA levels after 48h. AEME-cocaine combination decreased the enzymes activities after 3 and 6h, showing an additive effect in MDA levels after 48h. These data show that the glutathione-related enzymes imbalance caused by AEME, cocaine or AEME-cocaine combination exposure preceded neuronal death and lipid peroxidation. Moreover, the additive effect on lipid peroxidation observed with AEME-cocaine exposure after 48h, suggest a higher neurotoxic effect after crack cocaine use when compared to cocaine alone.

12.
Brain Res. ; 1704: p. 40-46, 2019.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15604

ABSTRACT

A local renin-angiotensin system (RAS) has been postulated in the pineal gland. In addition to angiotensin II (Ang II), other active metabolites have been described. In this study, we aimed to investigate a role for Ang IV in melatonin synthesis and the presence of its proposed (IRAP)/AT4 receptor (insulin-regulated aminopeptidase) in the pineal gland. The effect of Ang IV on melatonin synthesis was investigated in vitro using isolated pinealocytes. IRAP protein expression and activity were evaluated by Western blot and fluorimetry using Leu-4Me-ß-naphthylamide as a substrate. Melatonin was analyzed by HPLC, calcium content by confocal microscopy and cAMP by immunoassay. Ang IV significantly augmented the NE-induced melatonin synthesis to a similar degree as that achieved by Ang II. This Ang IV effect in pinealocytes appears to be mediated by an increase in the intracellular calcium content but not by cAMP. The (IRAP)/AT4 expression and activity were identified in the pineal gland, which were significantly higher in membrane fractions than in soluble fractions. Ang IV significantly reduced IRAP activity in the pineal membrane fractions. The main findings of the present study are as follows: (1) Ang IV potentiates NE-stimulated melatonin production in pinealocytes, (2) the (IRAP)/AT4 receptor is present in the rat pineal gland, and (3) Ang IV inhibits IRAP activity and increases pinealocytes [Ca2+]i. We conclude that Ang IV is an important component of RAS and modulates melatonin synthesis in the rat pineal gland.

13.
Nat Sci Sleep ; 10: 203-215, 2018.
Article in English | MEDLINE | ID: mdl-30046256

ABSTRACT

BACKGROUND: Melatonin is a neuroendocrine hormone that regulates many functions involving energy metabolism and behavior in mammals throughout the light/dark cycle. It is considered an output signal of the central circadian clock, located in the suprachiasmatic nucleus of the hypothalamus. Melatonin synthesis can be influenced by other hormones, such as insulin and glucocorticoids in pathological conditions or during stress. Furthermore, glucocorticoids appear to modulate circadian clock genes in peripheral tissues and are associated with the onset of metabolic diseases. In the pineal gland, the modulation of melatonin synthesis by clock genes has already been demonstrated. However, few studies have shown the effects of glucocorticoids on clock genes expression in the pineal gland. RESULTS: We verified that rats treated with dexamethasone (2 mg/kg body weight, intraperitoneal) for 10 consecutive days, showed hyperglycemia and pronounced hyperinsulinemia during the dark phase. Insulin sensitivity, glucose tolerance, melatonin synthesis, and enzymatic activity of arylalkylamine N-acetyltransferase, the key enzyme of melatonin synthesis, were reduced. Furthermore, we observed an increase in the expression of Bmal1, Per1, Per2, Cry1, and Cry2 in pineal glands of rats treated with dexamethasone. CONCLUSION: These results show that chronic treatment with dexamethasone can modulate both melatonin synthesis and circadian clock expression during the dark phase.

14.
Toxicol Res (Camb) ; 6(4): 420-431, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-30090510

ABSTRACT

Anhydroecgonine methyl ester (AEME), also called methylecgonidine, is a pyrolysis product of crack cocaine that is neurotoxic and potentiates cocaine-induced sensitization. The sensitization induced by drugs of abuse can be influenced by melatonin, a neuroprotective pineal hormone. In the same way, drugs of abuse like alcohol and methamphetamine can modify melatonin synthesis. The aim of the present work was to investigate the AEME effects on melatonin synthesis in the rat pineal gland. Neurotransmitter systems involved in its effects, antioxidant enzyme activities and the melatonin protective role in AEME-induced toxicity were also evaluated. The animals were injected with AEME i.p. (1.12 mg per kg of body weight per day) or vehicle for 10 consecutive days and the nocturnal pineal melatonin synthesis profile and SOD, GPx and GR activities in the cerebral cortex and hippocampus were assessed. Cultured pineal glands were incubated with AEME for 30 min or 48 h before norepinephrine stimulation and melatonin synthesis, arylalkylamine N-acetyltransferase activity, cAMP and [Ca2+]i were determined. The involvement of cholinergic and glutamatergic systems was analyzed using different antagonists. The protective role of melatonin in AEME toxicity on hippocampal neurons was evaluated by a viability assay. AEME impaired melatonin synthesis both in vivo and in vitro and this effect seems to be mediated by muscarinic receptors and [Ca2+]i elevation. AEME reduced neuronal viability and melatonin was able to protected hippocampal neurons against AEME toxicity. The melatonin synthesis impairment observed could lead to the worsening of the direct AEME neurotoxicity and to the exacerbation of the crack cocaine addiction and sensitization.

15.
Toxicol. Res. ; 6(4): 420-431, 2017.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15125

ABSTRACT

Anhydroecgonine methyl ester (AEME), also called methylecgonidine, is a pyrolysis product of crack cocaine that is neurotoxic and potentiates cocaine-induced sensitization. The sensitization induced by drugs of abuse can be influenced by melatonin, a neuroprotective pineal hormone. In the same way, drugs of abuse like alcohol and methamphetamine can modify melatonin synthesis. The aim of the present work was to investigate the AEME effects on melatonin synthesis in the rat pineal gland. Neurotransmitter systems involved in its effects, antioxidant enzyme activities and the melatonin protective role in AEME-induced toxicity were also evaluated. The animals were injected with AEME i.p. (1.12 mg per kg of body weight per day) or vehicle for 10 consecutive days and the nocturnal pineal melatonin synthesis profile and SOD, GPx and GR activities in the cerebral cortex and hippocampus were assessed. Cultured pineal glands were incubated with AEME for 30 min or 48 h before norepinephrine stimulation and melatonin synthesis, arylalkylamine N-acetyltransferase activity, cAMP and [Ca2+]i were determined. The involvement of cholinergic and glutamatergic systems was analyzed using different antagonists. The protective role of melatonin in AEME toxicity on hippocampal neurons was evaluated by a viability assay. AEME impaired melatonin synthesis both in vivo and in vitro and this effect seems to be mediated by muscarinic receptors and [Ca2+]i elevation. AEME reduced neuronal viability and melatonin was able to protected hippocampal neurons against AEME toxicity. The melatonin synthesis impairment observed could lead to the worsening of the direct AEME neurotoxicity and to the exacerbation of the crack cocaine addiction and sensitization.

16.
Sci Rep ; 5: 17555, 2015 Dec 02.
Article in English | MEDLINE | ID: mdl-26626425

ABSTRACT

The smoke of crack cocaine contains cocaine and its pyrolysis product, anhydroecgonine methyl ester (AEME). AEME possesses greater neurotoxic potential than cocaine and an additive effect when they are combined. Since atropine prevented AEME-induced neurotoxicity, it has been suggested that its toxic effects may involve the muscarinic cholinergic receptors (mAChRs). Our aim is to understand the interaction between AEME and mAChRs and how it can lead to neuronal death. Using a rat primary hippocampal cell culture, AEME was shown to cause a concentration-dependent increase on both total [(3)H]inositol phosphate and intracellular calcium, and to induce DNA fragmentation after 24 hours of exposure, in line with the activation of caspase-3 previously shown. Additionally, we assessed AEME activity at rat mAChR subtypes 1-5 heterologously expressed in Chinese Hamster Ovary cells. l-[N-methyl-(3)H]scopolamine competition binding showed a preference of AEME for the M2 subtype; calcium mobilization tests revealed partial agonist effects at M1 and M3 and antagonist activity at the remaining subtypes. The selective M1 and M3 antagonists and the phospholipase C inhibitor, were able to prevent AEME-induced neurotoxicity, suggesting that the toxicity is due to the partial agonist effect at M1 and M3 mAChRs, leading to DNA fragmentation and neuronal death by apoptosis.


Subject(s)
Cocaine/analogs & derivatives , Hippocampus/metabolism , Neurotoxicity Syndromes/metabolism , Neurotoxins/toxicity , Receptor, Muscarinic M1/metabolism , Receptor, Muscarinic M3/metabolism , Animals , Apoptosis/drug effects , CHO Cells , Cocaine/toxicity , Cricetinae , Cricetulus , DNA Fragmentation/drug effects , Female , Hippocampus/pathology , Neurotoxicity Syndromes/pathology , Rats , Time Factors
17.
Evodevo ; 5: 26, 2014.
Article in English | MEDLINE | ID: mdl-25243057

ABSTRACT

BACKGROUND: The primary hormone of the vertebrate pineal gland, melatonin, has been identified broadly throughout the eukaryotes. While the role for melatonin in cyclic behavior via interactions with the circadian clock has only been reported in vertebrates, comparative research has shown that the transcription-translation loops of the animal circadian clock likely date to the cnidarian-bilaterian ancestor, leaving open significant questions about the evolutionary origin of melatonin signaling in circadian behavior by interacting with the molecular clock. RESULTS: Expression of melatonin in adult anemones showed peak expression at the end of light period (zeitgeber time (ZT) = 12) when cultured under diel conditions, coinciding with expression of genes and enzyme activity for members of the melatonin synthesis pathway (tryptophan hydroxylase and hydroxyindol-O-methyltransferase), which also showed rhythmic expression. During embryogenesis and juvenile stages, melatonin showed cyclic oscillations in concentration, peaking in midday. Spatial (in situ hybridization) and quantitative (real-time PCR) transcription of clock genes during development of N. vectensis showed these 'clock' genes are expressed early in the development, prior to rhythmic oscillations, suggesting functions independent of a function in the circadian clock. Finally, time-course studies revealed that animals transferred from diel conditions to constant darkness lose circadian expression for most of the clock genes within 4 days, which can be reset by melatonin supplementation. CONCLUSIONS: Our results support an ancient role for melatonin in the circadian behavior of animals by showing cyclic expression of this hormone under diel conditions, light-dependent oscillations in genes in the melatonin synthesis pathway, and the function of melatonin in initiating expression of circadian clock genes in the cnidarian N. vectensis. The differences in expression melatonin and the circadian clock gene network in the adult stage when compared with developmental stages of N. vectensis suggests new research directions to characterize stage-specific mechanisms of circadian clock function in animals.

18.
Brain Res ; 1552: 1-16, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-24480475

ABSTRACT

The neurotoxicity of two secreted Phospholipases A2 from Brazilian coral snake venom in rat primary hippocampal cell culture was investigated. Following exposure to Mlx-8 or Mlx-9 toxins, an increase in free cytosolic Ca(2+) and a reduction in mitochondrial transmembrane potential (ΔΨm) became evident and occurred prior to the morphological changes and cytotoxicity. Exposure of hippocampal neurons to Mlx-8 or Mlx-9 caused a decrease in the cell viability as assessed by MTT and LDH assays. Inspection using fluorescent images and ultrastructural analysis by scanning and transmission electron microscopy showed that multiphase injury is characterized by overlapping cell death phenotypes. Shrinkage, membrane blebbing, chromatin condensation, nucleosomal DNA fragmentation and the formation of apoptotic bodies were observed. The most striking alteration observed in the electron microscopy was the fragmentation and rarefaction of the neuron processes network. Degenerated terminal synapses, cell debris and apoptotic bodies were observed among the fragmented fibers. Numerous large vacuoles as well as swollen mitochondria and dilated Golgi were noted. Necrotic signs such as a large amount of cellular debris and membrane fragmentation were observed mainly when the cells were exposed to highest concentration of the PLA2-neurotoxins. PLA2s exposed cultures showed cytoplasmic vacuoles filled with cell debris, clusters of mitochondria presented mitophagy-like structures that are in accordance to patterns of programmed cell death by autophagy. Finally, we demonstrated that the sPLA2s, Mlx-8 and Mlx-9, isolated from the Micrurus lemniscatus snake venom induce a hybrid cell death with apoptotic, autophagic and necrotic features. Furthermore, this study suggests that the augment in free cytosolic Ca(2+) and mitochondrial dysfunction are involved in the neurotoxicity of Elapid coral snake venom sPLA2s.


Subject(s)
Elapid Venoms/enzymology , Elapidae/metabolism , Hippocampus/cytology , Neurons/drug effects , Neurotoxins/toxicity , Phospholipases A2/toxicity , Animals , Apoptosis/drug effects , Autophagy/drug effects , Calcium Signaling/drug effects , Cells, Cultured , DNA Damage , Hippocampus/embryology , Membrane Potential, Mitochondrial/drug effects , Microscopy, Confocal , Microscopy, Electron, Scanning , Microscopy, Fluorescence , Necrosis , Neurotoxins/isolation & purification , Phospholipases A2/isolation & purification , Rats , Rats, Wistar , Vacuoles/drug effects , Vacuoles/ultrastructure
19.
Life Sci ; 94(2): 122-9, 2014 Jan 17.
Article in English | MEDLINE | ID: mdl-24239639

ABSTRACT

AIMS: The circadian rhythm in mammalian pineal melatonin secretion is modulated by norepinephrine (NE) released at night. NE interaction with ß1-adrenoceptors activates PKA that phosphorylates the transcription factor CREB, leading to the transcription and translation of the arylalkylamine-N-acetyltransferase (AANAT) enzyme. Several studies have reported the interplay between CREB and the nuclear factor-κB (NF-κB) and a circadian rhythm for this transcription factor was recently described in the rat pineal gland. In this work we studied a direct effect of NE on NF-κB activation and the role played by this factor on melatonin synthesis and Aanat transcription and activity. MAIN METHODS: Cultured rat pineal glands were incubated in the presence of two different NF-κB inhibitors, pyrrolidine-dithiocarbamate or sodium salicylate, and stimulated with NE. Melatonin content was quantified by HPLC with electrochemical detection. AANAT activity was measured by a radiometric assay and the expression of Aanat mRNA was analyzed by real-time PCR. Gel shift assay was performed to study the NF-κB activation in cultured rat pineal glands stimulated by NE. KEY FINDINGS: Our results showed that the p50/p50 homodimer of NF-κB is activated by NE and that it has a role in melatonin synthesis, acting on Aanat transcription and activity. SIGNIFICANCE: Here we present evidence that NF-κB is an important transcription factor that acts, directly or indirectly, on Aanat transcription and activity leading to a modulation of melatonin synthesis. NE plays a role in the translocation of NF-κB p50/p50 homodimer to the nucleus of pinealocytes, thus probably influencing the nocturnal pineal melatonin synthesis.


Subject(s)
NF-kappa B/biosynthesis , Norepinephrine/pharmacology , Pineal Gland/drug effects , Animals , Arylalkylamine N-Acetyltransferase/biosynthesis , Arylalkylamine N-Acetyltransferase/metabolism , Arylalkylamine N-Acetyltransferase/physiology , Cyclic AMP Response Element-Binding Protein/biosynthesis , Cyclic AMP Response Element-Binding Protein/physiology , Electrophoretic Mobility Shift Assay , Enzyme Activation/drug effects , Flow Cytometry , Male , Melatonin/biosynthesis , Melatonin/physiology , NF-kappa B/antagonists & inhibitors , NF-kappa B/physiology , Organ Culture Techniques , Pineal Gland/metabolism , Pineal Gland/physiology , Pyrrolidines/pharmacology , Rats , Rats, Wistar , Real-Time Polymerase Chain Reaction , Sodium Salicylate/pharmacology , Thiocarbamates/pharmacology
20.
J Pineal Res ; 56(4): p.371-81, 2014.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib11729

Subject(s)
Pharmacology , Genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...